Trunks, branches and leaves: understanding the early stages of star formation by applying tree diagrams to molecular line data.

John Alexander Pena Lopez

From Gas to Stars: The Links between Massive Star and Star Cluster Formation

Yorkshire Museum, York UK - 18/9/19
Setting the scene...
Star formation, briefly:

• A lot of gaps exist in our knowledge!
• High- vs. low-mass star formation.
Motivation:
The *Planck* satellite and telescope:
Planck Collaboration et al. 2011 (Paper XXIII)

Cold Clump Density Map

CO contours on Cold Clump Density Map
What telescope and data am I working with?

- 674 sources.
- Beam size: 56” @ 115 GHz.
- Observations of ^{12}CO, ^{13}CO and ^{18}O (all J = 1-0).
- Velocity resolution: 0.16-0.17 km/s
- Only dealing with ^{12}CO in this talk.

Purple Mountain Observatory (PMO): Qinghai Station (China)
How do we analyse molecular clouds?

- Statistical methods
- Segmentation methods

Dendrograms
Motivation:

Dendrogram = tree diagram
Tree diagrams?

Source: https://www.fast-growing-trees.com/products/SawtoothOak
Motivation:

Source: https://www.fast-growing-trees.com/products/SawtoothOak

leaves

trunk

branches
STRUCTURAL ANALYSIS OF MOLECULAR CLOUDS: DENDROGRAMS

E. W. Rosolowsky,1,2 J. E. Pineda,1 J. Kauffmann,1,3 and A. A. Goodman1,3

Received 2007 November 15; accepted 2008 February 11

dendrograms.readthedocs.io/en/stable/
What do dendrograms look like?

What are dendrograms?

What are dendrograms?

Applying the dendrogram algorithm to my dataset.

- Only 3 parameters needed to run the code:
- The algorithm was applied to the data cubes.

G005.2+14.4_20110601.co.fits.1
min value = 10 sigma, min delta = 10 sigma, min pix = 4
Results.
Larson's 2nd law (M_{virial} vs. L_{CO})

- Bolatto et al. 2008 (extragalactic)
- My work (12CO)
- Solomon et al. 1987 - MW
Larson's 3rd law (L_{CO} vs. R)

- Bolatto et al. 2008 (extragalactic)
- my work (12CO)
- Solomon et al. 1987 - MW
Motivation:

Virial parameter (alpha) vs. luminous mass (M_\odot)

\[
\log_{10}[\text{Virial parameter (alpha)}] \quad \log_{10}[\text{Luminous mass (} M_\odot \text{)]}
\]
Summary:

• 12CO molecular line data cubes, that were following up *Planck* early cold cores were successfully decomposed using a dendrogram algorithm.

• Our results reproduce all 3 of Larson’s laws and are similar to results found elsewhere in our galaxy and in resolved extragalactic clouds, but they have a wide spread; and these results must be cautiously interpreted!

• Virial parameter suggests nearly 50/50 split of gravitationally bound vs. unbound objects.

• We are dealing with a unique dataset that needs to be scrutinized further.