Resolving and characterising massive binaries at birth using high resolution techniques

Evgenia Koumpia, Postdoc fellow





René Oudmaijer, Rob Pomohaci (University of Leeds) Willem-Jan de Wit (ESO Chile)

### Why study them?

- Significant influence on high-mass star formation and evolution
- > 80% of main sequence O stars are found in tight binaries or multiples (Chini et al. 2013, Sana et al. 2014)
- Observations and statistics for young massive stars are lacking

### **Proposed formation mechanisms**

- Capture assisted by a disk in competitive accretion (Bally & Zinnecker 2005)
- Disk fragmentation (Krumholz+2009, Rosen+2016, Meyer+2018)
- Dynamical hardening (Dale & Davies 2006)
- Magnetic breaking (Lund & Bonnell 2018)

• **Note**: Different theories favor the formation of wider or of more compact binaries and of various mass ratios  $\rightarrow$  Troubles predicting high-mass close binaries

Observational input not only will inform those theories (q, a) but will also help to distinguish among them

# How can observations distinguish among theories?

## Example

• The disk fragmentation scenario favors co-planarity of the primary disks with binary orbits (Wheelwright et al. 2011)



• Kraus et al. 2017 found a massive protobinary (IRAS 17216-3801; 170 au) with the circumprimary disk is strongly misaligned w.r.t the binary separation vector

# **Observing binaries**



Multiple techniques are required to cover the full range of the parameter space

#### Visual binaries (wide)

Instrument: AO/K-band (2.2 micron) imaging (NaCo/VLT), θ = 0.12"
Sample: 32 MYSOs (10-20 M☉, L ~ 15000L☉, d ~ 3.3 kpc, K < 10.5, taken from the RMS survey)</li>

#### Long baseline interferometry (close)

Instrument: VLTI on Uts,  $\theta$  = 1.3 mas

- PIONIER (H band; 1.6 micron)  $\rightarrow$  Sample: 2 MYSOs (PDS 27, PDS 37)
- GRAVITY (K band; 2.2 micron) → Sample: 10 MYSOs

#### **Spectroscopic binaries (compact)**

- Instrument: X-Shooter/VLT, K band; R ~ 10000
- Sample: 69 MYSOs, 1<sup>st</sup> and 2<sup>nd</sup> epoch spectra (awarded 30 hours)

We aim to combine those techniques in order to fill in the gaps in the parameter space and derive the young massive binary fraction

# **Visual high-mass binaries**

# Searching for MYSO binary companions

- Contrast of  $\Delta K = 5 \text{ mag}$  at 1-3" and  $\Delta K = 3 \text{ mag}$  at 0.3"
- Covered separations: 600 10,000 au
- Companions are observable for separations 1000 10000 au, q > 0.5 and similar brightness  $\rightarrow$  multiplicity fraction of about 30% within 3"



Pomohaci et al. 2019

• Multiplicity fraction of MYSOs is found to be  $\sim$ 30% within 3" for the separation and mass ratios at which the NACO observations are sensitive to. Extrapolation shows higher percentages up to 100% for a wider separation and mass rate range.

• Crudely estimated mass ratios > 0.5 (lower limits)  $\rightarrow$  larger than what is expected from randomly sampling the IMF, as the binary capture formation predicts, but higher accuracy is needed.

# **Orbits/disks orientations: coplanar vs random**



**Insufficient** amount of sources with disk orientation measurements  $\rightarrow$  cannot safely differentiate between coplanar vs random orientations.

## Long baseline Interferometry

# What can NIR interferometry do for us?

Depending on the brightness distribution of the emitting region: a) **Visibility**: 1; unresolved, 0; resolved and, b) **Closure phases**:  $\neq 0^{\circ} \rightarrow$  flux asymmetries



Left) Uniform disk → sinc-like function in visibility Middle) Gaussian → smoothly declining visibility curve Right) Binary of equal brightness components → sinusoidal-like visibility curve

## **Discovering/resolving the tightest MYSO binary to date**



- We spatially resolve PDS 27 and PDS 37 for the first time, finding companions at 12 mas (30 au) and at 22-28 mas (42-54 au) respectively (Koumpia et al. 2019). These are two of the most **compact** and **massive** (>8 M $\odot$ ) YSO binaries to date traced using thermal IR emission (see also Kraus et al. 2017, Zhang et al. 2019)
- The binary nature of PDS 27 is also supported by FORS2 spectroscopic observations (FORS2, X-Shooter/VLT) suggesting an orbital period of  $\sim$ 10 years.

• The first survey dedicated to multiplicity of MYSOs reveals a fraction  $\sim$ 30% ( can be up to 100 %) (Pomohaci et al. 2019).

• PDS 27 and PDS 37 are the most compact and massive YSO binaries resolved to date. Using thermal IR emission we find physical separations of 30 au and ~50 au respectively (Koumpia et al. 2019).

• Complementary techniques on the youngest high mass binaries are important to cover the parameter space properly. Combined observations will distinguish among the formation theories and will quantitatively inform them.

- Co-planar vs random disk orientations in respect with orbit, can be used to support or not the disk fragmentation scenario.

– Accurate mass ratio (q) measurements can be used to support or not the binary capture formation scenario.

# In progress & Future – Stay tuned!

### **NIR interferometric mini-survey**

**Instrument:** GRAVITY/VLTI (K-band) (awarded time 15 hours on UTs; ongoing)

- Sample: 10 MYSOs
- Aim: determine the binary properties of MYSOs at intermediate separations (1-160au)
  Method:
- apply geometric models and image reconstruction techniques around Bry and CO bandhead emission to a) detect the binaries b) characterize them

### **NIR Spectroscopic Survey**

<u>Instrument</u>: X-Shooter/VLT (awarded time 30 hours / Oct. 2019- April 2020) NIR, R ~ 10000 (30 km/sec))

- *Sample*: 69 MYSOs, 37 of which 2<sup>nd</sup> epoch observations
- Aim: determine the fraction of close massive binaries (sub-au to few au separations)
- Method:
- RV measurements using the Bry emission (2 micron)
- Predicted periods range from days to 100s of days  $\rightarrow$  combine with RVs within a 3 yr period