The IMF in Young Massive Star Clusters: do we understand the completeness?

18.09.2019

Zeinab Khorrami
• Introduction on MF

• Artificial star experiment

• Uniform Distribution vs Spatially Varying models

• Synthetic observations (using MYOSOTIS)

• Examples of completeness-corrected MF

• Conclusion
Importance of Mass Function

Mass, age, source distribution, stellar parameters, ...

Problems:

- Evolutionary and atmosphere models limitations
- Observational/instrumental effects
- Challenges posed by target itself
Mass, age, source distribution, stellar parameters, ...

Mass Uncertainty:

- Evolutionary and atmosphere models limitations
- Observational/instrumental effects
- Challenges posed by target itself
Observed MF should be corrected for completeness:

- Artificial star experiment is applied on the observed image
- Completeness function is estimated and applied to correct MF

Where to put the artificial stars in the image?
Adding artificial stars with a given magnitude on the original image and estimating the completeness by photometry.
Adding artificial stars with a given magnitude on the original image and estimating the completeness by photometry

Siriani+2000
Adding artificial stars with a given magnitude on the original image estimating the completeness by photometry.
Adding artificial stars with a given magnitude on the original image and estimating the completeness by photometry.
SVM:

- Sensitive to the shape of the star cluster and its structure
- Depends on the magnitude of the artificial star

RMC136, HST/WFPC2, $V_{\text{mag}} = 21.56$

What is the real completeness?!
Make Your Own Synthetic ObservationS (MYOSOTIS)

Inputs:
- **Stars info**: Position, velocity, mass, age of stars (e.g. From Nbody simulations)
- **Cloud info**: Cloud particle’s position, mass, smoothing lengths (e.g. from SPH codes)
- **Telescope info**: Resolution, detector, Filter, FoV
- **Observing conditions**: Atmospheric condition, Adaptive Optics, Line-of-sight, distance of the object

Outputs:
-
 * _image.fits*: 2D fits image
 * _star_info.txt*: contains the information of the stellar sources in the FoV

 If spectroscopy='yes' the two other outputs:
 * _cube_spectra.fits*: 3D cube, X-Y is the position of stellar sources, z is flux in different wavelengths
 * _Lambda.txt*: the wavelengths [Å] which is used for the 3rd dimension of the spectral_cube

Khorrami et al. 2019

Written in IDL and PYTHON available in: http://github.com/zkhorrami/MYOSOTIS

Try MYOSOTIS on Thursday at Demonstrations
$M = 10^4 M_\odot$

$R_h = 0.5 pc$

$Age = 2 Myr$

$Distance = 50 Kpc$

HST resolution in V- & I-band

No Binaries, No extinction
Very simple case!

Synthetic images produced by MYOSOTIS (Khorrami et al. 2018)
$M = 10^4 M_\odot$

$R_h = 0.5\text{pc}$

$\text{Age} = 2\text{Myr}$

$\text{Distance} = 50\text{Kpc}$

HST resolution in V- & I-band

No Binaries, No extinction
Very simple case!

Synthetic images produced by MYOSOTIS (Khorrami et al. 2018)
\[M = 8.5 \times 10^3 M_\odot \]
\[R_h = 1.1 \text{pc} \]
\[\text{Age} = 5 \text{Myr} \]
\[\text{Distance} = 50 \text{Kpc} \]

HST resolution in V- & I-band

No Binaries, No extinction
Very simple case!

Synthetic images produced by MYOSOTIS (Khorrami et al. 2018)
$M = 8.5 \times 10^3 M_\odot$

$R_h = 1.1 \text{pc}$

$Age = 5 \text{Myr}$

$Distance = 50 \text{Kpc}$

HST resolution in V- & I-band

No Binaries, No extinction
Very simple case!

Synthetic images produced by MYOSOTIS (Khorrami et al. 2018)
• **Observations:** MF should be corrected for completeness

 Completeness function is different for different observations!

• **Simulations:** NOT to be compared directly with the observation

 Make synthetic observations first!

Spatially Varying Model: https://github.com/zkhorrami/SpatiallyVaryingModel.git

MYOSOTIS: http://github.com/zkhorrami/MYOSOTIS
Uniform Distribution Model
Uniform distribution or spatially varying model?

Uniform Distribution Model

Spatially Varying Model