Cataloguing substructure in Star Forming Regions

M. González, E. Moraux, I. Joncour IPAG - Grenoble

Objective

Construction of a catalog of substructure in star forming regions allowing for comparison of the substructure characteristics amongs different regions

Substructure Catalog

- Reliable
- Homogeneous

Methodology for detection

- Reliable
- Homogeneous
- Robust to different inputs

The procedure

DBSCAN

A&A 599, A14 (2017) DOI: 10.1051/0004-6361/201629398 © ESO 2017

Astronomy Astrophysics

Multiplicity and clustering in Taurus star-forming region

I. Unexpected ultra-wide pairs of high-order multiplicity in Taurus

Isabelle Joncour^{1,2}, Gaspard Duchêne^{1,3}, and Estelle Moraux¹

A&A 620, A27 (2018) https://doi.org/10.1051/0004-6361/201833042 © ESO 2018 Astronomy Astrophysics

PARAMETERS

Epsilon MinPts

Multiplicity and clustering in Taurus star forming region

II. From ultra-wide pairs to dense NESTs*

Isabelle Joncour^{1,2}, Gaspard Duchêne^{1,3}, Estelle Moraux¹, and Frédérique Motte¹

Choosing epsilon

Compare the sample with complete spatial randomness

One point correlation function

$$\Psi(r) = \frac{w_{samp}(r)}{w_{rand}(r)}$$

w is the first nearest neighbour density

$$w_{rand}(r) = 2\pi \rho r \exp(-\pi \rho r^2)$$
Local density from the mean 6th nearest neighbour distance

../DatosCoordDist/Taurus.Rdata

Choosing Nmin

Guarantee reliability over random fluctuations

$$w_{rand}^n(r) = \frac{2(\pi\rho)^n}{\Gamma(n)} r^{2n-1} \exp(-\rho\pi r^2)$$

$$P(n) = \int_0^{\epsilon} w_{rand}^n$$

Probability of having at least n neighbours within an epsilon radius for a random distribution.

Simulations

Projection effects and homogeneous distributions

Ripley K function

$$K(r) = \rho^{-1} \frac{Card\{p_i, p_j \mid d(p_i, p_j) < r\}}{n}$$
 $K_{rand}(r) = \pi r^2$

$$K_{rand}(r) = \pi r^2$$

Radius of local homogeneity

Locally homogeneous regions

homogeneity radius - epsilon ratio

Structured regions

Concentrated regions

Real data: Taurus

Taurus

Real data: ic348

Real data: Carina Nebula

Summary

- Developed a robust methodology to retrieve structures on a variety of different nature inputs
- Objective, statistically-based srategies to ensure reliability and mitigate projection effects.
- Limits: single scale → density. Multiscale version already on development.