Cataloguing substructure in Star Forming Regions

M. González, E. Moraux, I. Joncour IPAG - Grenoble

Objective

Construction of a catalog of substructure in star forming regions allowing for comparison of the substructure characteristics amongs different regions

Substructure Catalog

- Reliable
- Homogeneous

Methodology for detection

- Reliable
- Homogeneous
- Robust to different inputs

The procedure

DBSCAN

A\&A 599, A14 (2017) DOI: 10.1051/0004-6361/201629398 © ESO 2017

Astronomy Astrophysics

Multiplicity and clustering in Taurus star-forming region
I. Unexpected ultra-wide pairs of high-order multiplicity in Taurus

Isabelle Joncour ${ }^{1,2}$, Gaspard Duchêne ${ }^{1,3}$, and Estelle Moraux ${ }^{1}$

A\&A 620, A27 (2018)
https://doi.org/10.1051/0004-6361/201833042
(c) ESO 2018

Astronomy Astrophysics

PARAMETERS
Epsilon
MinPts

Multiplicity and clustering in Taurus star forming region
II. From ultra-wide pairs to dense NESTs ${ }^{\star}$

Isabelle Joncour ${ }^{1,2}$, Gaspard Duchêne ${ }^{1,3}$, Estelle Moraux ${ }^{1}$, and Frédérique Motte ${ }^{1}$

Choosing epsilon

Compare the sample with complete spatial randomness
../DatosCoordDist/Taurus.Rdata
One point correlation function

$$
\Psi(r)=\frac{w_{s a m p}(r)}{w_{r a n d}(r)}
$$

w is the first nearest neighbour density

$$
w_{\text {rand }}(r)=2 \pi \underset{\substack{\text { Local density from the mean } 6^{\text {th }} \\ \text { nearest neighbour distance }}}{\rho r \exp \left(-\pi \rho \mathrm{r}^{2}\right)}
$$

Choosing Nmin

Guarantee reliability over random fluctuations

$$
\begin{gathered}
w_{r a n d}^{n}(r)=\frac{2(\pi \rho)^{n}}{\Gamma(n)} r^{2 n-1} \exp \left(-\rho \pi r^{2}\right) \\
P(n)=\int_{0}=\int_{0}^{\epsilon} r a n d \quad \begin{array}{l}
\text { Probability of having at least } \mathrm{n} \\
\text { neighbours within an epsilon } \\
\text { radius for a random distribution. }
\end{array}
\end{gathered}
$$

Simulations

Projection effects and homogeneous distributions

2D homogeneous

3D projected homogeneous

Ripley K function

$$
K(r)=\rho^{-1} \frac{\operatorname{Card}\left\{p_{i}, p_{j} \mid d\left(p_{i}, p_{j}\right)<r\right\}}{n} \quad K_{\operatorname{rand}}(r)=\pi r^{2}
$$

E1

2D homogeneous

E1

3D projected homogeneous

Radius of local homogeneity

E

NestsDFromMean_Frac2p0_4.RData

Structured

E

NestsDFromMean_Frac3p0_2.RData

Homogeneous
Concentrated

Locally homogeneous regions

homogeneity radius - epsilon ratio

Structured regions

Concentrated regions

Real data: Taurus

Taurus

Real data: ic348

Real data: Carina Nebula

Buckner et al 2019
(ellipses: Khun et al 2014)

Summary

- Developed a robust methodology to retrieve structures on a variety of different nature inputs
- Objective, statistically-based srategies to ensure reliability and mitigate projection effects.
- Limits: single scale \rightarrow density. Multiscale version already on development.

