CHRONOSTAR: UNSUPERVISED, BLIND DISCOVERY AND AGEING OF STELLAR ASSOCIATIONS

Timothy Crundall
Prof. Michael Ireland (Masters supervisor)
Prof. Mark Krumholz (Masters supervisor)
Prof. Christoph Federrath
Dr. Maruša Žerjal
Jonah Hansen “... practically didn’t do anything” - J. Hansen
Murphy et al. 2015
MOTIVATION

• Vast majority of young-ish (<200 Myr) stars are unbound
• Kinematic analysis promises to find the origins of all these stars and assign an age
WE NEED A METHOD THAT

Can derive
• Initial location
• Initial distribution
• A consistent age

But also
• Is not sensitive to membership selection
• Can handle partial memberships
• Can handle complicated formation histories
• Is robust to measurement uncertainties
CLASSICAL APPROACH
EXPANSION AGES

\[\frac{\text{km s}^{-1}}{\text{pc}} \sim \frac{1}{\text{time}} \]

BPMG
Mamajek and Bell 2014
<table>
<thead>
<tr>
<th>Reference</th>
<th>Age (Myr)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrado y Navascués et al. (1999)</td>
<td>20 ± 10 Myr</td>
<td>CMD isochronal age (KM stars)</td>
</tr>
<tr>
<td>Zuckerman et al. (2001)</td>
<td>12^{+8}_{-4} Myr</td>
<td>H–R diagram isochronal age (GKM stars) + Li depletion</td>
</tr>
<tr>
<td>Ortega et al. (2002)</td>
<td>11.5 Myr</td>
<td>Traceback age</td>
</tr>
<tr>
<td>Song et al. (2003)</td>
<td>12 Myr</td>
<td>Traceback age</td>
</tr>
<tr>
<td>Ortega et al. (2004)</td>
<td>10.8 ± 0.3 Myr</td>
<td>Traceback age</td>
</tr>
<tr>
<td>Torres et al. (2006)</td>
<td>~18 Myr</td>
<td>Expansion age</td>
</tr>
<tr>
<td>Makarov (2007)</td>
<td>22 ± 12 Myr</td>
<td>Traceback age</td>
</tr>
<tr>
<td>Mentuch et al. (2008)</td>
<td>21 ± 9 Myr</td>
<td>Li depletion</td>
</tr>
<tr>
<td>Macdonald & Mullan (2010)</td>
<td>~40 Myr</td>
<td>Li depletion (magnetoconvection models)</td>
</tr>
<tr>
<td>Binks & Jeffries (2014)</td>
<td>21 ± 4 Myr</td>
<td>Li depletion boundary</td>
</tr>
<tr>
<td>Malo et al. (2014)</td>
<td>26 ± 3 Myr</td>
<td>Li depletion boundary</td>
</tr>
<tr>
<td>Malo et al. (2014)</td>
<td>21.5 ± 6.5 Myr (15–28 Myr)</td>
<td>H–R diagram isochronal age (KM stars)</td>
</tr>
<tr>
<td>This work</td>
<td>22 ± 3 Myr</td>
<td>CMD isochronal age (FG stars)</td>
</tr>
<tr>
<td>Final</td>
<td>23 ± 3 Myr (1σ)</td>
<td>Li depletion boundary and isochronal age (FGKM stars)</td>
</tr>
</tbody>
</table>

[±2 Myr (statistical), ±2 Myr (systematic)]
CHRONOSTAR
BAYESIAN APPROACH – TRACEFORWARD
SCORING THE MODEL

\[p(C|D) \propto p_{\text{prior}}(C)p(D|C) \]

\[p(D|C) \propto \prod_{i=1}^{N} \int N(\theta; \mu_i, \Sigma_i)N(\theta; \mu_c, \Sigma_c) \, d\theta \equiv \prod_{i=1}^{N} \Omega_{i,c} \]
Use synthetic data to test accuracy of this method

Generate stars from a 6D Gaussian (that matches assumptions)
Project them forward in time through the galactic potential
Measure stars in current epoch
 • Using median Gaia DR2 uncertainties as synthetic uncertainties

Variable star count, age, spread and velocity dispersion
SYNTHETIC RESULTS
BAYESIAN APPROACH
COMPARISON TO CLASSICAL TRACEBACK

True age = 50 Myr
Convert data to XYZUVW

n = n + 1

Initialise component parameters

Perform EM fit with n components

Calculate membership probabilities

Expectation

Maximise each of the n components

Maximise Comp A

Maximise Comp B

Maximise Comp C

Has fit converged?

No

Yes

Has extra component improved the BIC?

No

Yes

Return previous fit as the best fit
Chronostar's BPMG age: $17.8^{+1.2}_{-1.2}$ Myr

M&B14 age: 23 ± 3 Myr
SUMMARY

• Chronostar accurately and reliably retrieves kinematic ages from Gaussian initial conditions up to 100 Myr
• Can reliably decompose complicated combinations of synthetic associations
• First kinematic ages that are consistent with chemical ages
• Able to blindly rediscover BPMG (and Tucana Horologium!)
• Able to decompose massive, complicated associations with sensible results
• RVs not needed!
• Allow for **non-isotropic** initial velocity dispersion
• Methodically go through all known moving groups/associations and calculate kinematic ages from current membership lists
• Decompose large complicated associations (e.g. Sco-Cen)
• Improve performance (epicyclic approximations, action space)
• Search through all of Gaia DR2