High-Mass Star Formation in the Far Outer Galaxy

Will Armentrout Postdoctoral Fellow

Collaborators on this work:

GREEN BANK

OBSERVATORY

Loren Anderson, David Frayer, Dana Balser, Tom Bania, Tom Dame, Trey Wenger

WISE Infrared Background ¹³CO 10 GHz Continuum

Hu Regions as Star Formation Tracers

•Ionized Hydrogen (HII) surrounding high-mass stars

•Can be seen across the Galactic disk from the mid-IR to Radio (bright!)

•Zero-age objects compared to the Milky Way

•Associated molecular gas reservoirs contribute to ongoing star formation

4.5, 8, **24** micron GLIMPSE+MIPSGAL

The WISE Catalog of Galactic HII Regions

- \bullet Contains ~2000 known H $\scriptstyle\rm II$ regions and ~6000 candidate H $\scriptstyle\rm II$ regions
- Characteristic Infrared Morphology
 - 22 μ m core Hot (\approx 100 K) small grain emission, traces massive stars
 - \bullet 12 μm , diffuse PAH emission, traces photodissociation regions
- After we determine candidates in IR, we confirm with radio

Outer Scutum-Centaurus Arm (OSC)

Extension of the Scutum-Centaurus Arm in 1st Quadrant Boundary for high-mass SF within the Milky Way

> Mean Solar Distance ~21 kpc Galactocentric Radius ~15 kpc

Integrated HI from the LAB Survey – Figure 1 from Armentrout et al. 2017

Figure 5 from Armentrout et al. 2017 with Integrated HI in Grayscale

Face-On Map

17 Detected OSC HII Regions

Red targets observed in Armentrout + 2017. Black from known H11 region catalog (Anderson+ 2015).

Largest Heliocentric Radii of any HII Regions Discovered within the Milky Way

Stellar types as early as O4 (~60 M_{\odot})

Expectations for Outer Galaxy Star Formation

Star formation in the outer Galaxy could be similar to that of a much younger Milky Way (or galaxies like the Large Magellanic Cloud)

- Lower Gas Densities
- Lower Metallicity Environment

From Balser et al. 2011/2015

- $12 + \log(O/H) = > 8.9$ at the Galactic Center (GC) 8.54 at the Solar orbit 8.29 at 15 kpc from GC
- Higher Molecular Gas Conversion Factor (CO-to-H₂, X_{CO})

Observing and Reduction Plan

- 1. Map the thermal continuum and molecular gas (¹³CO/HCN/HCO+) from **all known OSC H**^{II} **regions** with the Green Bank Telescope.
- 2. Characterize the total molecular gas (from ¹³CO) and the dense gas clumps (from HCN/HCO+) of outer Galaxy star forming regions.

GOAL : Constrain the efficiency of star formation in the outer Galaxy.

- Compare stellar component and molecular gas reservoirs of outer and inner Galaxy samples. radio continuum → ionizing radiation → stellar content molecular lines → gas content
- Map out to ~15 kpc from Galactic Center (Complementary sample to EMPIRE Survey, etc. which detects HCN and HCO+ out to galactocentric radii of ~10 kpc in other Galaxies.)

16 pixel Argus Array, GBT

This work tunes to ¹³CO, HCN, HCO+, & 7 other lines 16-element Argus Array Green Bank Telescope

Operates from 74-116 GHz

Currently ~1000 hours of available Argus time per year

(Project underway to enable daytime high frequency observations)

¹³CO Contours in Green VLA Contours in Grey (10 GHz Continuum) *WISE* Infrared Background

16 pixel Argus Array, GBT

This work tunes to ¹³CO, HCN, HCO+, & 7 other lines 5 arcmin x 5 arcmin (Daisy Scans) 25 minutes per map RMS ~0.5 K /~0.1 K • km s⁻¹ 7 arcsec resolution at 110 GHz

>65% of OSC HII regions had ¹³CO detections, covering a wide range of molecular cloud masses (11/17)

100% of OSC HII regions (so far) had dense gas (HCN, HCO+) detections (6/6)

¹³CO Contours in Green VLA Contours in Grey (10 GHz Continuum) *WISE* Infrared Background

13**CO** HCN

 $Log(N_{Ly}) = 49.1 (05.5)$ $Log(M_{Mol}/M_{\odot}) = 5.6$ $Log(M_{Dense}/M_{\odot}) = 4.4$ $M_{Dense}/M_{mol} = 5.3\%$

G028.320+01.243 60 arcsec $Log(N_{Ly}) = 48.2 (08)$

 $Log(N_{Ly}) = 48.2 (08)$ $Log(M_{Mol}/M_{\odot}) = 5.7$ $Log(M_{Dense}/M_{\odot}) = 4.5$ $M_{Dense}/M_{mol} = 5.7\%$

 $Log(N_{Ly}) = 48.2 (08)$ $Log(M_{Mol}/M_{\odot}) = 5.8$ $Log(M_{Dense}/M_{\odot}) = 4.5$ $M_{Dense}/M_{mol} = 4.8\%$

13**CO**

G062.578+2.387

141 arcsec

 $Log(N_{Ly}) = 49.2 (05.5)$ $Log(M_{Mol}/M_{\odot}) = 5.6$ $Log(M_{Dense}/M_{\odot}) = 4.8$ $M_{\text{Dense}}/M_{\text{mol}} = 14.4\%$

The outliers are actively star forming. These are our highest luminosity regions.

Most regions in our survey range have a dense gas fraction of 5%.

- Battisti & Heyer (2018) found typical dense gas fraction of 7% of Milky Way clouds.
- Jimenez-Donaire et al. (2019) found the dense gas fraction in EMPIRE galaxies decreased with R_{Gal}, out to their limit of 10 kpc.
- Our "average" cloud has a dense gas fraction of 5%, but it's still a small sample.

Molecular Gas Maps of OSC HII Regions GREEM Lyman Continuum Photons [log(s⁻¹)] Star Formation Rate ($10^{-4} M_{\odot} yr^{-1}$) 48.248.749.4 49.5 49.645.647.549.12.00.8 1.01.53.04.05.0 6.0 40From VLA 10 GHz Continuum From WISE 24 µm 35 35Dense Gas Fraction (%) 22 25 27 27 27 28 29 20 (%) -30 1010 5 5

• Highest luminosity regions have higher dense gas fractions.

50

55

60

65

• The ionizing sources could be:

35

40

45

Stellar Mass (Largest) [M_☉]

25

30

• Stripping away the diffuse molecular gas, leaving dense, star forming cores intact

0 5.8

6.0

6.2

Total IR Luminosity (Log[L/L $_{\odot}$])

6.4

6.6

Heating the regions and exciting HCN (this has been seen in the centers of ULIRGS)

Gao and Solomon relationship reproduced from Lada et al. 2012

Green Stars – Dense Gas, traced by HCN

Purple Squares – Total Molecular Gas, traced by ¹³CO

SFR calculated from *WISE* 24 μm (Cluver+ 2017) using the *WISE* Catalog of Galactic HII Regions (Anderson+ 2014)

Molecular masses from our ¹³CO and HCN observations using Lada+ 2012 prescription

High-Mass Star Formation in the Far Outer Galaxy

Star formation in the outer Galaxy could be similar to that of a much younger Milky Way (or lower metallicity galaxies like the Large Magellanic Cloud). It can also serve as a pattern for star formation on the outskirts of nearby galaxies.

The OSC contains stellar types as early as O4, Molecular cloud masses ranging from $10^5 - 10^6 M_{\odot}$. Dense gas tracers have been detected in all targets so far observed. *(Observations ongoing)*

Dense gas ratio is flat beyond $R_{Gal} = 10$ kpc (5%), with the exception of the most active star forming regions (log[LyC] > 49), where the ratio was increased by a factor of ~7 (ratio of 37%).

Future Work: (1) Finish mapping dense gas from the OSC sample.(2) Compare to representative inner Galaxy sample to trace radial trends.

Will Armentrout warmentr@nrao.edu Postdoctoral Fellow Green Bank Observatory

Total infrared luminosity scales with 10 GHz radio continuum (thermal). GREEN

Deriving Underlying Stellar Population

 Table 4. Single-Star H II Region Parameters

$Log_{10}(N_{Ly}) (s^{-1})$		Spectral	$N_{Ly}) (s^{-1})$	$\log_{10}(1)$	Spectral	
tins	n Marti	Smith	Type	Martins	Smith	Type
44	48.4	48.70	O7.5	_	46.10	B1.5
63	48.6	49.00	07	_	46.50	B1
80	48.8	_	O6.5	_	47.00	B0.5
96	48.9	_	O6	_	47.40	B0
11	49.1	_	O5.5	47.56	_	O9.5
26	49.2	49.20	O5	47.90	47.90	O9
47	49.4	49.40	O4	48.10	_	O8.5
63	49.6	49.50	O3	48.29	48.50	08
8 9 1 2 4	48.8 48.9 49.1 49.2 49.4	- - 49.20 49.40	O6.5 O6 O5.5 O5 O4	47.90 48.10	47.00 47.40 - 47.90 -	B0.5 B0 O9.5 O9 O8.5

$$L_{\nu} = 4\pi \ 10^{-26} \left[\frac{D}{\mathrm{m}}\right]^2 \left[\frac{S_{int}}{\mathrm{Jy}}\right] \left[\mathrm{W \ Hz^{-1}}\right] \quad (3)$$
$$N_{Ly} = 6.3 \times 10^{52} \left[\frac{T_e}{10^4 \ \mathrm{K}}\right]^{-0.45} \left[\frac{\nu}{\mathrm{GHz}}\right]^{0.1} \left[\frac{L_{\nu}}{10^{20} \ \mathrm{W \ Hz^{-1}}}\right] \left[\mathrm{s^{-1}}\right] \quad (4)$$

Figure 7. Image of the Galactic distribution of nebular electron temperatures produced from the discrete H II regions located between Galactic azimuth 330° and 60° for the Green Bank Sample (110 sources). The image was generated by using Shepard's method with $\alpha = 5$ (see the text). The contours range between 6400 and 11,200 K at intervals of 400 K. The darker shades are lower temperatures. The orientation is the same as in Figure 1 with the Galactic Center at located at (x = 0, y = 0) and the Sun at 8.5 kpc above the Galactic Center at zero azimuth. The points indicate the location of the discrete H II regions.

Figure 8. O/H abundance ratio radial gradient for the GBT Sample (top) and the Green Bank Sample (bottom). Only quality factor values of C and better for both line and continuum data are included. The solid lines are linear least-squares fits to the data. Top panel: $330^{\circ} < Az < 360^{\circ}$. Middle panel: $0^{\circ} < Az < 30^{\circ}$. Bottom panel: $30^{\circ} < Az < 60^{\circ}$.

X-Axis : Lyman Continuum Photons / Stellar Mass from VLA radio continuum observations

GREEN BANK

Y-Axis : Total Molecular Gas Mass from GBT 13 CO observations $X_{13CO} = 10 \ge 10^{20} \text{ cm}^{-2} \text{ (K km s}^{-1})^{-1}$

OSC Molecular gas mass is likely an underestimate, since X_{CO} should be higher in outer Galaxy (with lower metallicity)

X-Axis : Lyman Continuum Photons / Stellar Mass from VLA radio continuum observations

GREEN BANK

Y-Axis : Total Molecular Gas Mass from GBT 13 CO observations $X_{13CO} = 10 \ge 10^{20} \text{ cm}^{-2} \text{ (K km s}^{-1})^{-1}$

OSC Molecular gas mass is likely an underestimate, since X_{CO} should be higher in outer Galaxy (with lower metallicity)

Inner Galaxy sample from Anderson+ 2008 using BU-FCRAO Galactic Ring Survey