Unravelling the Story of Massive Star Formation: Clues from the YSOs of NGC2264

Anne Buckner
University of Leeds
Structure of Talk

- NGC2264
- What’s special about it?
- INDICATE
- What did we find?
- Conclusions
NGC2264

- Embedded cluster in Mon OB1
- Distance ~720pc
- Age spread of ~4-5 Myr (e.g. Mayne & Naylor 2008, Venuti et al. 2017)
- 1 O-type star (binary), SMon
- North older
- Star formation active
[Catalogues: Rapson et al.(2014) + Kuhn et al.(2014)]

Buckner et al. (A&A, in prep)
INDICATE
INDICATE

- Statistical clustering tool
INDICATE

- Statistical clustering tool
- Intensity, correlation and spatial distribution
INDICATE

- Statistical clustering tool
- Intensity, correlation and spatial distribution
- 2+D discrete astronomical datasets
INDICATE

- Statistical clustering tool
- Intensity, correlation and spatial distribution
- 2+D discrete astronomical datasets
- Distinguishes clustered point from random
INDICATE

- Statistical clustering tool
- Intensity, correlation and spatial distribution
- 2+D discrete astronomical datasets
- Distinguishes clustered point from random
- Quantifies the DEGREE of clustering of each point
INDICATE

• Statistical clustering tool

• Intensity, correlation and spatial distribution

• 2+D discrete astronomical datasets

• Distinguishes clustered point from random

• Quantifies the DEGREE of clustering of each point

• Assigns an index to each point
The Index

• An evenly spaced control field of the same size & parameter space as dataset is created
• Calculate average distance to point’s 5th nearest neighbour in control field
• Count how many neighbours are within that radius for each point in the dataset
The Index

- An evenly spaced control field of the same size & parameter space as dataset is created
- Calculate average distance to point’s 5th nearest neighbour in control field
- Count how many neighbours are within that radius for each point in the dataset

\[I = \frac{3}{5} = 0.6 \]

\[I = \frac{20}{5} = 4 \]

Buckner et al. (2019)
The higher the index \rightarrow more spatially clustered the star is
WAIT! WAIT! WAIT! WAIT!

HOLD ON A SECOND!
I want to know more about this!
In detail here:

✓ Buckner et al. (2019)
Bibcode: 2019A&A...622A.184B

✓ Demonstration on Thursday
Location: The Hospitium

Free Stuff!
(1) As the YSOs evolve they become more spatially dispersed
(1) As the YSOs evolve they become more spatially dispersed.
(2) The degree of clustering also decreases as they evolve.
(2) The degree of clustering also decreases as they evolve.

![Bar chart showing typical index values of clustered sources for Class 0/I, Class II, Class TD, and Class III. The values decrease from Class 0/I to Class III.]
(3) Less objects are spatially clustered in (older) North
(3) Less objects are spatially clustered in (older) North

- North: 6.9% clustered, 93.1% dispersed
- South: 29.0% clustered, 71.0% dispersed
(4) Clustered objects in North are less tightly so than in South.
(4) Clustered objects in North are less tightly so than in South
Stars are forming in a tightly clustered environment, then dynamically evolving to form part of NGC2264’s dispersed population.
Class II
1.132 mas/yr

Class III
2.047 mas/yr

Buckner et al. (A&A, in prep)
Internal PMs for within 0.05° of SMon

- Green = Class II
- Purple = Class III
Summary

• Characterised the spatial & kinematic behaviour of YSOs in NGC2264

• Distinct difference in clustering behaviour by evolutionary stage

• More evolved objects → More dispersed

• Typical PM’s of Class III objects are ~2x larger than Class II

• Argue dynamical evolution rather a primordial signature of SF

• Effect of stellar feedback from SMon is significant within 0.05°