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One-to-one relationship between
the core and stellar mass functions (CMF vs IMF)

Submm ground-based, Herschel, and NIR extinction surveys of the past 2

decades (Motte+ 1998, 2001; Testi & Sargent 1998; Johnstone+ 2000; Stanke+ 2006; Alves+ 2007;
Nutter & Ward-Thompson 2007; Enoch+ 2008; André+ 2010; Konyves+ 2015, ...).
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The IMF is at least partly determined by fragmentation at the pre-stellar stage

Studies limited to <5 Mg stars..

in reglons not typical of the main mode of star formatlon in galactic disks.



From local clouds to molecular cloud complexes
more typical of the Galactic disk
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(Figure adapted from
Hurt & Benjamin 2008
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Assumptions behind the CMF/IMF comparison (1)

1. Measured core mass = total mass available to form a star

> |s gas mass feeding from surroundings negligible? Accretion streams
are observed toward high-mass cores (e.g., Csengeri+ 2001a).

» Multiplicity and feedback should be taken into account.

Model of*eontinuous growth of core |
_ | prestellor Mass in the protostellar phase

-
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Assumptions behind the CMF/IMF comparison (2)

2. Uniform gas-to-star mass conversion, € (m) = cst

» Outflows regulate € (Matzner & McKee 2000)? or

» € increases with core density like in clumps (e.g., Louvet+ 2014)?

3. Lifetime independent of the core mass, snapshot = true CMF

> Deficit of intermediate-mass cores (Hatchell & Fuller 2008) and

> Missing high-mass prestellar cores (e.g., Motte+ 2007; Tigé+ 2017;
Svoboda+ 2016; Nony+ 2018).

These effects should cancel out to keep the CMF/IMF shapes so similar.
= conspliracy?

= or central limit theorem?

= or obs. uncertainties too large to see that IMF is not so universal?
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W43, a cloud agglomeration at the tip of the Galactic bar

- W43 is located N front Of the GalaCtiC |Ong - Scenario in agreement Wlth numerical
bar (Nguyen Luong+ 2011b, Carlhoff+ 2013). § models of cloud collision at the edge of

- 12CO gas flows along the Galactic arm and galactic bars (Renaud+ 2016)

forms W43 through cloud-cloud collision
(Motte+ 2014).
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Dynamics of high-mass star-forming ridges & cores

B Molecular cloud comple:

Ridge
or hub

MASSIVE DENSE CORE PHASES

o Starless MDC phase (~10" year)

Intermittent
gas inflows

Protostar
growing in
stallar mass

Motte, Bontemps, & Louvet ARA&A 2018

 Clouds forming high-mass stars
and massive clusters:

They are high-density, massive, and

dynamical clouds, which we call

ridges or hubs (2-10 pc® @ >10%

10° cm?).

e Star formation in ridges/hubs:

Gravity braids filaments in a
globally-collapsing clump and
attracts even more filaments.

Stars, cores (0.02 pc) and MDCs
(0.1 pc) simultaneously form and
grow in mass. There may not exist a
high-mass prestellar core phase.
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An ALMA view of
the W43-MM1 mini-starburst protocluster
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Mass completeness
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131 cores detected with getsources (2000 AU, ~1-100 Mg),
among which 13 forming high-mass stars.




Temperature model and core evolutionary status

Contraints;

- SED fitting of Herschel and
submm images, including
pastleiiil  ALMA,  with  PPMAP
soh3 ‘
RILOUTShT method (Marsh+ 2016).

(Motte, Nony, Louvet et al. 2018)
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Local heating extrapolated
from hot cores detection
and the total luminosity of
the region, 2 x 10% Lg
(Herpin+ 2012; Mollet+).

= All detected cores are in an early stage of their evolution. They are
prestellar cores or IR-quiet/Class O protostars (+a possible HC HII).

— M, = total mass currently available for a binary star to form.
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Tests and uncertainties on the CMF

Supplementary Table 2 — Tests performed to evaluate the uncertainty of the reference CMF fit of Fig. 2b.

Mass range Y
Reference cumulative CMF of all cores extracted by gefsources > 1.6 Mg -0.96 = 0.02
with 50 uncertainty derived from the mass uncertainties > 1.6 M, -0.96 +0.13
low-mass regime 1.6 -20M, -0.93 +0.02
(high-mass regime, 9 cores) (>20 M) (-1.3+£0.3)
with a lower completeness level >4.5M, -0.99 + 0.04
CMF of the 94 most robust cores > 1.6 M, -0.90 = 0.02
CMF with core masses estimated in the optical thin approximation > 1.6 M, -0.98 + 0.04
Differential CMF with all cores and default assumptions >1.6 M, -0.90 £ 0.06
CMF built from cores extracted in a classic-cleaned image > 1.6 Mg ~1.10 £ 0.05
in a merged (7 m + 12 m) image >1.6Msor>5M. -1.10 £ 0.04
with MRE-GaussCrLumps >1.6 M, or >5M. @

Notes: CMFs are fitted by power-laws of the form N(>log(M)) o« M7, except for the differential CMF where
the power-law is dN/d log(M) oc M”. Several mass ranges are used o fit the CMFs of less-constrained core
samples derived from the merged (7 m + 12 m) image and the MRE-GaussClumps algorithm. Except when
specified otherwise, all uncertainties given here are lo.

Uncertainties on k, T, and fluxes used in MC simulations
= +0.13 uncertainty

Synthetic observations/extractions
= 90% completeness limit = 1.6 Mg
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Core Mass Function within the W43-MM1 ridge

The 1.6-100 Mg part of the CMF is much flatter than usually found.
=> It would suggest an atypical IMF for stars of 1-50 Mg (e=50%).

Or CMF evolution

Or complex CMF/IMF
relation

(Motte, Nony, Louvet et al. 2018, Nature Astronomy.)
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Core Mass Function within the W43-MM1 ridge

The 1.6-100 Mg part of the CMF is much flatter than usually found.
=> It would suggest an atypical IMF for stars of 1-50 Mg (e=50%).

Or CMF evolution: ny, Louvet et al. 2018, Nature Astronomy.)

 Continuous mass growth of cores

= flatter CMF fit

 New episodes of core formation | N — m-0.96
¢ N./dm ~ m
%

— maybe steeper

Or complex CMF/IMF relation:

Variation with core mass of the

 Core and star multiplicity - OlE mmeertamty
e Core lifetime, ...

Mass, M [Mg]
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Why low-mass cores would be underpopulated?

Missing low-mass cores and low-density

filaments!l. due.to.shears?

CMF fit

> M, N(>log
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M(55) = 0.8 M, .
' W43-MMT1 protocluster is ~10°
yrs old only. New filaments
‘ could form and host additional
46° W [ow-mass cores before HiIl
RA [72000] regions blow the ridge gas.
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ALMA-IMF targets

Table 1: Complete sample of massive protoclusters at <6 kpc, o

ATLASGAE 870 firm

L
ATLASGAL a8 B8 Spitzer
@570 um S

3col

2.0 kpc

Name d  M(<pc?) Lpa/M  Mosaic, Resol
kpe] [Mp]  [Lo/Mg) ["x", "

Young protoclusters
5.5 16 x 103 3.9 0 = 80, 0.37
39 8.0x10% 9.3 b % 55, 0.51
28 6.5x10% 10 0 % 70, 0.67
5.5 13 x 10° 11 0 x 60, 0.37
28 4.2x10° 13 0 x 70, 0.67
2‘0 3.3 W 103 13 M . 1M N 95

E— 34 27x10° 16 Eyolution 7

Intermed brotoclusters
5.4 22 x 103 25 with time 7
2.0 2.2 % 1[:'3 29 uoAs LU, .95

} 55 6.6 %103 30 0 x 60, 0.37

24 52x10% 46 0 x 100, 0.95

Evolved protoclusters

I 36 3.0x10°% 50 5 x 55, 0.51
49 T74x10% 54 0 x 60, 0.37
54 14 x 103 69 x 60, 0.37
42 13 x10° 130 0 x 110, 0.51

Complete sample of 1pc-size clumps at

<6 kpc with masses above few 1000 Mg
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ALMA-IMF Cycle 5 LP

ALMA-IMF large program:
* Pls: F. Motte, A. Ginsburg, F. Louvet, P. Sanhueza
* Management Team:
4 Pls + T. Csengeri, S. Bontemps, R. Galvan-Madrid, F. Nakamura, A. Stutz
* Consortium members:

o ALMA experts: A. Lopez-Sepulcre, L. Maud, N. Cunningham

o PhDs:T. Nony, J. Molet, R. Mignon-Risse

o Theoreticians: P. Hennebelle, Y.-N. Lee, M. Gonzalez, G. Gomez
and
J. Bally, C. Battersby, J. Braine, L. Bronfman, N. Brouillet,V. Chen, J. di Francesco, R.
Finger, A. Gusdorf, A. Guzman, F. Herpin, I. Joncour, B. Ladjelate, H.-L. Liu, X. Lu, K.
Marsh, A. Maury, K. Menten, E. Moraux, Q. Nguyen Luong, S. Ohashi, F. Olguin, N.
Reyes, J.-F. Robitaille, E. Rosolowsky, T. Sakai, B. Svoboda, K. Tatematsu, F.
Wyrowski...
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Science objectives of ALMA-IMF

IMF origin: CMF per region, as a function of cloud mass, cloud evolution,
density...
Mass inflow: Formation of filaments, shocks, angular momentum

Core mass growth and CMF evolution
Initial conditions of high-mass star formation: high-mass prestellar core or very
young protostar¢
Protostars: history of the accretion (via outflows, luminosity), lifetime
Chemical enrichment: hot cores (new lines, evolutionary sequence?) and shocks
(cloud collision, outflow, protostellar accretion)
Outflows: generating turbulence, correlation with filament elongation and
magnetic direction
Core and filament distribution: mass, age segregation, relation to large-scale

cloud characteristics
SFR,
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Take-away message

+ Ridges & Hubs

Ridges are high-density, massive, and dynamical clouds, where star formation is
intense and cluster of high-mass stars form. They could represent the precursors of

starburst clusters.

Typical star-formation sites have characteristics between ridges and GB clouds...

* Origin of the IMF — Cycle 5 ALMA LP

The CMF of the W43-MMT1 mini-starburst does not mimic the IMF!

More massive protoclusters need to be investigated to understand:
If mini-starbursts have atypical CMF,

How their cores content evolves from young (like W43-MM1) to more evolved
star-forming clouds (like W51).

Open question: The dependence of the CMF & IMF with galactic environments.
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