

Not all stars form in clusters

measuring the kinematics of OB associations with *Gaia*

Jacob Ward

Heidelberg University ward@uni-heidelberg.de

Diederik Kruijssen (Heidelberg) & Hans-Walter Rix (MPIA)

A "classical" view of star formation

- Most, if not all, stars form in clusters
- Gas and stars in virial equilibrium
- Stellar feedback expels gas

- Only ~10% of star formation ends up in bound clusters (e.g. Lada & Lada 2003)
- We refer to this as the monolithic model of star formation

An alternative model of star formation

 Star formation follows the fractal nature of the molecular clouds from which they form (e.g. Elmegreen 2002,2008, Bastian+2007, Bonnell+2011, Kruijssen 2012)

- Stars form from a continuous distribution of gas densities and star formation efficiency is dependent on gas density
- This means that star formation is clustered but not all stars form in gravitationally bound clusters
- This eliminates the need for gas-expulsion-driven expansion
- We refer to this as the hierarchical model of star formation

ESA/ATG medialab; background: ESO/S. Brunier

Gaia-DR1/TGAS

The Tycho-Gaia Astrometric Solution (TGAS)

 a combination of the 1st Gaia data release and the existing Tycho2 astrometric catalogue

Parallaxes and proper motions for ~2 million stars

Parallax uncertainties ~ 0.32 mas

PM uncertainties ~ 1.32 mas/yr

Association membership selection

OB stars in a 300 pc box around where an OB association should

be

Association membership selection

All stars in the box

$$|v_x| < 3\sigma_{v_X}$$
 and $|v_y| < 3\sigma_{v_Y}$
 $v_X \equiv v_X - \mu_{v_X}$ and $v_y \equiv v_Y - \mu_{v_Y}$

This helps to ensure that we do not include any stars which are on very different orbits to the OB association.

What can we expect from an OB association formed from monolithic star formation?

- The majority of its members should be moving outwards from one or more sites of formation.
- On average stars should exhibit positive radial velocities with respect to the centre of the association. This should be true regardless of the number of initial clusters.
- The velocity field should remain radially anisotropic over many crossing times (several tens Myr)
 Baumgardt & Kroupa 2007

What do we test?

- Number ratio: $N_{v_r > 0} / N_{v_r < 0}$
- Median radial velocity
- Median radial velocity normalised by tangential velocity
- Radial anisotropy $\beta = 1 \frac{\langle v_t^2 \rangle}{\langle v_r^2 \rangle}$

Jacob Ward

Jacob Ward

Not all stars form in clusters.

The results of this study are totally inconsistent with the predictions of a monolithic model of star formation

These results favour a hierarchical picture of star formation in which OB associations can form as large, scale-free structures following the structure of the molecular cloud

(e.g. Elmegreen 2002, 2008, Bastian et al. 2007,

Bonnell et al. 2011, Kruijssen 2012)

Gaia DR1/TGAS

Gaia DR2

5 parameter sources

6 parameter sources

Parallax uncertainty

PM uncertainty

~2,000,000

0

0.32 mas

1.32 mas/yr

>1,300,000,000

>6,000,000

<0.04(G<15), <0.1 (G=17)

<0.06(G<15), <0.2(G=17)

ESA/ATG medialab; background: ESO/S. Brunier

Median $v_r = 0.23 \text{ km/s}$

Key points

- The dynamics of OB associations are inconsistent with expanding velocity fields
- Clusters are a possible outcome of star formation rather than a fundamental unit and star formation most likely proceeds in a scale-free fashion, following the hierarchical structure of the parent cloud
- Gaia DR2 now allows us to measure the kinematics for an unprecedented number of OB associations, out to distances
 ~3 kpc
- Early results from Gaia DR2 also suggest that OB associations could not have formed from the expansion of compact clusters