Simulation of binaries properties in a fragmented cluster

Timothé Roland

PhD work with
Christian Boily & Laurent Cambresy

Observatoire astronomique de Strasbourg
Introduction

Aim of my PhD: try to simulate the complexity of star forming region (SFR):

- Multiphysical process
- Deal with large to small spatial scales

First work: made with the AMUSE platform on binaries

Question: Are stars of the field born in observed SFR?

- Difference between the binaries in the field and in SFR:
Same architecture and interface to use lots of different codes

Allow to compute multiphysics with the code you want

Code developed in Leiden
By Portegies Zwart et al
https://github.com/amusecode/amuse
The AMUSE multiple module

- Pure Nbody code usually numerically complex
- AMUSE Multiple module:
 uses different code to model different scale:
 (2+1 pure Nbody solver)
 - one for the whole cluster (top level)
 - two for the multiple systems (smallN)
Initial conditions:
- Cluster of 100 stars in a virialized king model
- With canonical IMF
- ~30% of binaries randomly positionned following observational parameters (review of Duchêne and Kraus 2013)

<table>
<thead>
<tr>
<th>Mass range</th>
<th>Multiplicity fraction</th>
<th>Mass fraction</th>
<th>Semimajor axis [AU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLM type</td>
<td>0.22 ± 0.05</td>
<td>$q^{4.2}$</td>
<td>logNormal ($\mu=4.5$, $\log\sigma = 0.5$)</td>
</tr>
<tr>
<td>[0.01M\odot; 0.1M\odot]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M type</td>
<td>0.26 ± 0.03</td>
<td>$q^{0.4}$</td>
<td>logNormal ($\mu=5.3$, $\log\sigma = 1.3$)</td>
</tr>
<tr>
<td>[0.1M\odot; 0.7M\odot]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar type</td>
<td>0.44 ± 0.02</td>
<td>$q^{0.3}$</td>
<td>logNormal ($\mu=45$, $\log\sigma = 2.3$)</td>
</tr>
<tr>
<td>[0.7M\odot; 1.5M\odot]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A type</td>
<td>[0.5; 0.7]</td>
<td>$q^{-0.5}$</td>
<td>logNormal ($\mu=350$, $\log\sigma = 3$)</td>
</tr>
<tr>
<td>[1.5M\odot; 5M\odot]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B type</td>
<td>[0.6; 0.7]</td>
<td>$q^{-0.5}$</td>
<td>Uniform(0.15, 15)</td>
</tr>
<tr>
<td>[5M\odot; 16M\odot]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O type > 16M\odot</td>
<td>[0.8, 1]</td>
<td>$q^{-0.5}$</td>
<td>Uniform(0.15, 15)</td>
</tr>
</tbody>
</table>
Evolution during 20 Myr:

- Unstable system
- Lots of collisions in the first Myr: leads to mass segregation
Evolution during 20 Myr:
- Unstable system
- Lots of collisions in the first Myr: leads to mass segregation
First basic simulation

Evolution during 20 Myr:
- Unstable system
- Lots of collisions in the first Myr: leads to mass segregation
Evolution during 20 Myr:
- Unstable system
- Lots of collisions in the first Myr: leads to mass segregation
Evolution during 20 Myr:
- Unstable system
- Lots of collisions in the first Myr:
 - leads to mass segregation
 - Modifies the binaries properties
Binaries properties

Initial conditions

Primary mass evolution

Number of binaries

Mprim [MSun]

10^{-1} 10^{0} 10^{1}
Binaries properties

After 10 Myr

Primary mass evolution

Number of binaries

Mprim [MSun]
Binaries properties

Initial conditions

Semimajor axis distribution

Number of binaries

\[\text{Number of binaries} \]

\[a \text{ [AU]} \]

\[10^{-1} \text{ to } 10^{3} \]
Binaries properties

After 10 Myr

Semimajor axis distribution

Number of binaries

10^{-1} 10^{0} 10^{1} 10^{2} 10^{3}

a [AU]
Binaries properties

Initial conditions

Eccentricities distribution

Number of binaries

e
Binaries properties

After 10 Myr

Eccentricities distribution

Number of binaries

e

0.0 0.2 0.4 0.6 0.8
Julien Dorval PhD work:
- Adiabatic expansion of a 100k stars cluster (no hydro)
- leads to fragmentation

Extract cubes of 3-5k stars and select subgroups with MST method of ~100 stars.
Fragmented cluster

- Auto-coherent method to generate initial conditions
- Mass segregated
- Multiplicity rate ~30%
Fragmented cluster

Initial conditions

Primary mass evolution

Number of binaries

M_{prim} [MSun]

10^{-1} 10^0 10^1
Fragmented cluster

After 10 Myr

Primary mass evolution

Number of binaries

M_{prim} [MSun]
Fragmented cluster

Initial conditions

Semimajor axis distribution

Number of binaries

10^0 10^1 10^2 10^3 10^4

a [AU]
Fragmented cluster

After 10 Myr

Semimajor axis distribution

Number of binaries

$\frac{r}{\text{[AU]}}$

10^0 10^1 10^2 10^3 10^4
Fragmented cluster

Initial conditions

Semimajor axis distribution

Number of binaries

10^0 10^1 10^2 10^3 10^4

a [AU]
After 10 Myr

Fragmented cluster

![Semimajor axis distribution](image)

Number of binaries

a [AU]
Fragmented cluster

Initial conditions

Eccentricities distribution

Number of binaries

0.0 0.2 0.4 0.6 0.8

e
Fragmented cluster

After 10 Myr

Eccentricities distribution

Number of binaries

0 1 2 3 4 5 6 7 8
0.0 0.2 0.4 0.6 0.8 e
Summary:
- Binary evolution very sensitive in star formation environment
- How precise the observed binary properties distribution are?

Perspective:
- Add stellar evolution to compute the stars luminosity and extract luminosity maps
- Add gas