Simulation of binaries properties in a* fragmented cluster

Timothé Roland
PhD work with Christian Boily \& Laurent Cambresy

Introduction

Aim of myPhD: try to simulate the complexity of star forming region (SFR):

M Multiphysical process
> Deal with large to small spatial scales
First work: made with the AMUSÉ platform on binaries
Question: Are stars of the field born in observed SFR?
Difference between the binaries in the field and in SFR:

The AMUSE code

> Same architecture and interface to use lots of different codes
> Allow to compute multiphysics with the code you want

Code developed in Leiden By Portegies Zwart et al https://github.com/amusecode/amuse
he AMUSE multiple

module

> Pure Nbody code usually numerically complex
> AMUSE Multiple module:
Top level code
uses different code to model different scale:
($2+1$ pure Nbody solver)

- one for the whole cluster (top level)
- two for the multiple systems (smallN)

First basic simulätion

Initial conditions :

$>$ cluster of 100 stars in a virialized king model
$>$ with canonical IMF
$>\sim 30 \%$ of binaries randomly positionned following observationnal parameters (review of Duchêne and Kraus 2013)

Mass range	Multiplicity fraction	Mass fraction	Semimajor axis [AU]
$\begin{gathered} \text { VLM type } \\ {[0.01 \mathrm{M} \odot ; 0.1 \mathrm{M} \odot]} \end{gathered}$	0.22 ± 0.05	$q^{4.2}$	$\begin{gathered} \log \text { Normal } \\ (\mu=4.5, \log \sigma=0.5) \end{gathered}$
$\begin{gathered} \text { M type } \\ {[0.1 \mathrm{M} \odot ; 0.7 \mathrm{M} \odot]} \end{gathered}$	0.26 ± 0.03	$q^{0.4}$	$\begin{gathered} \text { logNormal } \\ (\mu=5.3, \log \sigma=1.3) \end{gathered}$
$\begin{gathered} \text { Solar type } \\ \text { [0.7M๑; 1.5M๑] } \end{gathered}$	0.44 ± 0.02	$q^{0.3}$	$\begin{gathered} \log \text { Normal } \\ (\mu=45, \log \sigma=2.3) \end{gathered}$
$\begin{gathered} \text { A type } \\ {[1.5 \mathrm{M} \odot ; 5 \mathrm{M} \odot]} \end{gathered}$	[0.5; 0.7]	$q^{-0.5}$	logNormal $(\mu=350, \log \sigma=3)$
$\begin{gathered} \text { B type } \\ {[5 \mathrm{M} \odot ; 16 \mathrm{M} \odot]} \end{gathered}$	[0.6; 0.7]	$q^{-0.5}$	Uniform(0.15, 15)
O type > 16M0	[0.8, 1]	$q^{-0.5}$	Uniform(0.15, 15)

First basic simulation

Evolution during 20 Myr :
$>$ Unstable system
Lots of collisions in the first Myr:
leads to mass segregation

First basic simulation

Evolution during 20 Myr :
$>$ Unstable system
Lots of collisions in the first Myr: leads to mass segregation

First basic simulation

Evolution during 20 Myr :
>Unstable system
Lots of collisions in the first Myr: leads to mass segregation

First basic simulation

Evolution during 20 Myr :
$>$ Unstable system
$>$ Lots of collisions in the first Myr: leads to mass segregation

First basic simulätion

Evolution during 20 Myr :

$>$ Unstable system
>Lots of collisions in the first Myr:

- leads to mass segregation
- Modifies the binaries properties

Binaries properties

Initial conditions
Primary mass evolution

Binaries properties

After 10 Myr
Primary mass evolution

Binaries properties

Initial conditions
Semimajor axis distribution

Binaries properties

After 10 Myr
Semimajor axis distribution

Binaries properties

Initial conditions
Eccentricities distribution

Binaries properties

After 10 Myr
Eccentricities distribution

Fragmented cluster

Julien Dorval PhD work:
$>$ Adiabatic expansion of a 100k stars cluster (no
hydro)
$>$ leads to fragmentation

Extract cubes of $3-5 \mathrm{k}$ stars and select subgroups with MST method of ~ 100 stars.

Fragmented cluster

> Auto-coherent method to generate initial conditions Mass segregated
Multiplicity rate $\sim 30 \%$

Fragmented cluster

Initial conditions
Primary mass evolution

Fragmented cluster

After 10 Myr
Primary mass evolution

Fragmented cluster

Initial conditions
Semimajor axis distribution

Fragmented cluster

After 10 Myr
Semimajor axis distribution

Fragmented cluster

Initial conditions
Semimajor axis distribution

Fragmented cluster

After 10 Myr
Semimajor axis distribution

Fragmented cluster

Initial conditions
Eccentricities distribution

Fragmented cluster

After 10 Myr
Eccentricities distribution

Summary:

Binary evolution very sensitive in star formation environment
$>$ How precise the observed binary properties distribution are?

Perspective:

- Add stellar evolution to compute the stars luminosity and extract luminosity maps
Add gas

