Simulation of binaries properties in a fragmented cluster

Timothé Roland

PhD work with Christian Boily & Laurent Cambresy

Observatoire **astronomique** de Strasbourg

SFM 2018 Grenoble

Introduction

<u>Aim of my PhD:</u> try to simulate the complexity of star forming region (SFR):

- Multiphysical process
- Deal with large to small spatial scales

First work: made with the AMUSE platform on binaries

Question: Are stars of the field born in observed SFR ? > Difference between the binaries in the field and in SFR:

The AMUSE code

- Same architecture and interface to use lots of different codes
- Allow to compute multiphysics with the code you want

Code developed in Leiden By Portegies Zwart et al https://github.com/amusecode/amuse

Ihe AMUSE multiple module

Pure Nbody code usually numerically complex

 AMUSE Multiple module: uses different code to model different scale: (2+1 pure Nbody solver)
 one for the whole cluster (top level)
 two for the multiple systems (smallN)

SmallN code

Initial conditions :

- cluster of 100 stars in a virialized king model
- with canonical IMF
- ~30% of binaries randomly positionned following observationnal

parameters (review of Duchêne and Kraus 2013)

Mass range	Multiplicity fraction	Mass fraction	Semimajor axis [AU]
VLM type [0.01M0; 0.1M0]	0.22 ± 0.05	q ^{4.2}	logNormal (μ=4.5, logσ = 0.5)
M type [0.1M0; 0.7M0]	0.26 ± 0.03	$q^{0.4}$	logNormal (μ = 5.3, logσ = 1.3)
Solar type [0.7M0; 1.5M0]	0.44 ± 0.02	$q^{0.3}$	logNormal (μ = 45, logσ = 2.3)
A type [1.5M0; 5M0]	[0.5; 0.7]	$q^{-0.5}$	logNormal (μ = 350, logσ = 3)
B type [5M0; 16M0]	[0.6; 0.7]	$q^{-0.5}$	Uniform(0.15, 15)
O type > 16M0	[0.8, 1]	$q^{-0.5}$	Uniform(0.15, 15)

Evolution during 20 Myr :
➢ Unstable system
➢ Lots of collisions in the first Myr: leads to mass segregation

Evolution during 20 Myr :
➢ Unstable system
➢ Lots of collisions in the first Myr: leads to mass segregation

Evolution during 20 Myr :
➢ Unstable system
➢ Lots of collisions in the first Myr: leads to mass segregation

Evolution during 20 Myr :

➢Unstable system

≻Lots of collisions in the first Myr:

- leads to mass segregation
- Modifies the binaries properties

Julien Dorval PhD work:

- Adiabatic expansion of a 100k stars cluster (no hydro)
- ➢leads to fragmentation

Extract cubes of 3-5k stars and select subgroups with MST method of ~100 stars.

- Auto-coherent method to generate initial conditions
- Mass segregated
- Multiplicity rate ~30%

Conclusion

Summary:

- Binary evolution very sensitive in star formation environment
- How precise the observed binary properties distribution are ?

Perspective:

 Add stellar evolution to compute the stars luminosity and extract luminosity maps
 Add gas