Issues in understanding the spatial distributions of stars and gas

Richard Parker
(Royal Society Dorothy Hodgkin Fellow, University of Sheffield)

With thanks to: Nick Wright (Keele, UK), Michael Meyer (Michigan, USA), Sascha Quanz (ETH Zurich, Switzerland), Simon Goodwin (Sheffield, UK), Jim Dale (Hertfordshire, UK), Barbara Ercolano (LMU, Munich), Catarina Alves de Oliveira (ESA), Germano Sacco (Arcetri, Italy)
Motivation

• See talks by Sarah, Nick, Simon & Michael

• We want to understand conversion of gas to stars (is it a direct mapping?)

• We want to quantify the initial conditions of star formation (and subsequent planet formation)

• My question to me (and us): are measures for quantifying spatial distributions robust enough?
Quantifying structure and morphology

- Divides mean MST length by mean separation length

\[Q = \frac{\bar{m}}{\bar{s}} \]

Centrally concentrated Plummer sphere (Q = 1.1)
Quantifying structure and morphology

- Divides mean MST length by mean separation length

\[Q = \frac{\bar{m}}{\bar{s}} \]

Hierarchical fractal distribution (Q = 0.4)

Divides mean MST length by mean separation length:

\[Q = \frac{\bar{m}}{\bar{s}} \]

- \(Q > 0.9 \) = radially concentrated
- \(Q < 0.7 \) = substructured
- Many young star-forming regions substructured (e.g. Cartwright & Whitworth 2004; Schmeja et al 2008; Sanchez & Alfaro 2009)
Gas structure

Control Run I from Dale et al 2014

Q \sim 0.72 \text{ for sink particles, i.e. border between substructured and smooth }
Q \sim 1.01 \text{ for the gas, i.e. smooth }

(Parker & Dale 2015, using method from Lomax et al 2011)
Gas structure

Dual-feedback Run I from Dale et al 2014

Q ~ 0.49 for sink particles, i.e. substructured
Q ~ 0.88 for the gas, i.e. smooth

(Parker & Dale 2015, using method from Lomax et al 2011)
Why does the Q-parameter not tell me what I want to hear?

- Let’s assume the structure in the gas resembles a ring, constructed from making a hole in a centrally concentrated distribution:

\[(a) \ Q = 1.1 \]

\[(b) \ Q = 0.75 \]

\[(c) \ Q = 0.60 \]

(Parker & Dale 2015)
Now something more complicated:

- Broken ring; 2000 points, $Q = 0.3$
- Uniform background; 1000 points, $Q = 0.7$
- Central clump, 3000 points, $Q = 1.7$
- Combined: $Q = 0.9!$

(Parker & Dale 2015)
Gas structure

Big clump of gas dominates the distribution (Parker & Dale 2015)
But is this something we should just accept?
Mass segregation: Λ_{MSR}

Allison et al 2009
(also Maschberger & Clarke 2011, Olczak et al 2011)

$$\Lambda_{\text{MSR}} = \frac{\langle l_{\text{norm}} \rangle}{l_{\text{massive}}} \pm \frac{\sigma_{\text{norm}}}{l_{\text{massive}}}$$
Mass segregation: Λ_{MSR}

(M. McCaughrean/ESO 2001)

$$\Lambda_{\text{MSR}} = \frac{\langle l_{\text{norm}} \rangle}{l_{\text{massive}}} \pm \frac{\sigma_{\text{norm}}}{l_{\text{massive}}}$$

Allison et al 2009
In hydro simulations

Maschberger & Clarke 2011
Primordial mass segregation?

Simulations from Dale et al 2012/2014 WITHOUT feedback:

1 Myr
Primordial mass segregation?

Simulations from Dale et al 2012/2014 WITHOUT feedback:

1 Myr

Full evolution
Primordial mass segregation?

Simulations from Dale et al 2012/2014 WITH feedback:
Local surface density \(\Sigma_{\text{LDR}} \)

- Determine the local density of every star.
- Compare to the local density of the massive stars:
 \[\Sigma_{\text{LDR}} = \frac{\Sigma_{\text{massive}}}{\Sigma_{\text{cluster}}} \]

Maschberger & Clarke 2011
Local surface density Σ_{LDR}

- Massive stars in areas of higher than average surface density

Maschberger & Clarke 2011
Local surface density Σ_{LDR}

Control Run I from Dale et al 2014

- $\Sigma_{LDR} \gg 1$ with NO FEEDBACK (Parker, Dale & Ercolano 2015)
Local surface density Σ_{LDR}

Dual-feedback Run I from Dale et al 2014

- $\Sigma_{\text{LDR}} \sim 1$ WITH FEEDBACK (Parker, Dale & Ercolano 2015)
Myers et al (2014) find that magnetic fields lead to $\Sigma_{LDR} \gg 1$ compared to control run.
The density degeneracy problem

(Parker 2014)
The density degeneracy problem

(Parker 2014)
Dynamical evolution

Cool-collapse model from Allison et al 2010; Parker et al 2014a,b
Quantifying structure and morphology

- Divides mean MST length by mean separation length:
 \[
 Q = \frac{\bar{m}}{\bar{s}}
 \]

- Q > 0.8 = radially concentrated
- Q < 0.8 = substructured
- Many young star-forming regions substructured (e.g. Cartwright & Whitworth 2004; Schmeja et al 2008; Sanchez & Alfaro 2009)
Evolution of structure and morphology

• Measuring structure - evolution of the Q-parameter in a collapsing (cool) fractal cluster:

![Graphs showing evolution of structure and morphology](image)

- Dynamics rapidly erases substructure (Scally & Clarke 2002; Goodwin & Whitworth 2004; Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer 2014)
Evolution of structure and morphology

- Measuring structure - evolution of the Q-parameter in a collapsing (cool) fractal cluster:

 - Dynamics rapidly erases substructure (Scally & Clarke 2002; Goodwin & Whitworth 2004; Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer 2014)
We can constrain the initial density of nearby star-forming regions by using their structure (Parker 2014).
We can constrain the initial density of nearby star-forming regions by using their structure (Parker 2014).
Warm expansion model from Parker et al 2014a,b
Evolution of structure and morphology

- Measuring structure - evolution of the Q-parameter in an unbound (hot) region:

(Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer 2014)
Evolution of structure and morphology

- Measuring structure - evolution of the Q-parameter in an unbound (hot) region:

(Parker & Meyer 2012; Parker, Wright, Goodwin & Meyer 2014)
Morphological stochasticity
Local surface density Σ_{LDR}

- Determine the local density of every star.
- Compare to the local density of the massive stars:
 \[\Sigma_{LDR} = \frac{\Sigma_{\text{massive}}}{\Sigma_{\text{cluster}}} \]

Maschberger & Clarke 2011

\[\Sigma = \frac{N - 1}{\pi r^2} \]
Using surface density to probe evolution

The $\Sigma - m$ technique (Maschberger & Clarke 2011):
- Determine the local density of every star.
- Compare to the local density of the massive stars:

$$\Sigma_{\text{LDR}} = \frac{\Sigma_{\text{massive}}}{\Sigma_{\text{cluster}}}$$

(Küpper et al 2011, Parker, Wright, Goodwin & Meyer 2014)
Dynamical histories of star clusters

(Parker, Wright, Goodwin & Meyer 2014; Parker 2014; Wright et al 2014; Parker & Alves de Oliveira 2017; Sacco et al, 2017)
Dynamical histories of star clusters

Very dense

\((10^4 \text{ stars/pc}^3)\)

Less dense

\((100 \text{ stars/pc}^3)\)

(Parker, Wright, Goodwin & Meyer 2014; Parker 2014; Wright et al 2014; Parker & Alves de Oliveira 2017; Sacco et al, 2017)
Radial velocities

NGC1333 – Foster et al 2015

\[\sigma_{\text{vir}} = \sqrt{\frac{2GM}{\eta R}} \]
Radial velocities

\[\sigma_{\text{vir}} = \sqrt{\frac{2GM}{\eta R}} \]

Parker & Wright 2016
Virial ratio

Parker & Wright 2016
Conclusions/provocations

• No direct mapping of spatial distribution of gas to stars
• No convincing evidence for primordial mass segregation in hydrodynamical simulations

• BUT: spatial distributions can/might be a clock for dynamical evolution
• NO observed SF regions supervirial
• Initial density typically 100 – 1000 stars pc$^{-3}$

• Kinematics even more confusing…?