Winds and Radiation in Unison
A New 1D Feedback Model for Cloud Dissolution
Daniel Rahner, Eric Pellegrini, Simon Glover, Ralf Klessen ITA (Heidelberg)

El Escorial 14.6.2017

1) What is the main feedback force on cloud scale?
2) What is the minimum star formation efficiency needed to destroy molecular clouds?
3) Coupled or not: How much radiation is escaping?
Why do we worry about feedback?

- Star formation rate too high
- Star clusters too bound
- IMF is wrong

Klessen & Burkert 2001
What is stellar feedback?

- Supernovae
- Stellar Winds
- Radiation:
 - Radiation pressure
 - Thermal feedback
- Photochemistry

UNDERSTANDING ONLINE STAR RATINGS:

- ★★★★★ [HAS ONLY ONE REVIEW]
- ★★★★★ EXCELLENT
- ★★★★☆ OK
- ★★★☆☆ CRAP
The Life of a Molecular Cloud

Gravity

Star Formation

Supernova Explosions

Stellar Winds

Radiation
The model
(for massive clouds)

Rahner, Pellegrini,
Glover, Klessen subm.
(arXiv:1704.04240)
The model
(for massive clouds)

(See Draine11, Martinez Rahner, Pellegrini, Glover, Klessen subm. arXiv:1704.04240)
1) Dominating Feedback

\[F_{\text{ram}} = F_{\text{wind}} + F_{\text{SN}} \]
\[= M_w v_w + M_{\text{SN}} v_{\text{SN}} \]

\[F_{\text{rad}} = F_{\text{direct}} + F_{\text{indirect}} \approx f_{\text{abs}} \frac{L_{\text{bol}}}{c} (1 + \tau_{\text{IR}}) \]

\[F_{\text{grav}} = \frac{GM_{\text{sh}}}{R^2} \left(\frac{M_* + M_{\text{sh}}}{2} \right) \]

Integrated over cloud lifetime:

\(\Omega_{\text{rad}} > 0.5 \) radiation pressure

\(\Omega'_{\text{rad}} > 0.5 \) radiation pressure

(If hot gas pressure excluded)

Rahner, Pellegrini, Glover, Klessen subm. (arXiv:1704.04240)
2) Minimum star formation efficiency

- Minimum star formation efficiency increases with increasing mass.

Rahner, Pellegrini, Glover, Klessen subm. (arXiv:1704.04240)

Kim+16

Minimum star formation efficiency increases with increasing mass.
3) Escape fractions

- Escape fractions show variability
- Generally higher for low metallicity

Solar metallicity

As in Howard+17

Low metallicity (15% solar)

10^5, low dens

10^5, high dens

10^6, low dens

10^6, high dens

Rahner, Pellegrini, Glover, Klessen subm. (arXiv:1704.04240)
Summary

● 1D code modeling cloud expansion including winds, SNe, radiation pressure, gravity and shell structure

● Feedback from radiation and winds/SNe is interconnected

● There is not the one main source of feedback. When? How massive is the cloud? How dense? How massive is the star cluster?

● Minimum star formation efficiency increases with cloud mass (5% - 15% for dense $10^5 - 10^7 M_\odot$ clouds)

● Photon escape fractions are strongly time-dependent (e.g., peak at ~5 Myr)