INDICATE:

INdex to Define Inherent Clustering And TEndencies

Talk Structure

- Motivation
- What is INDICATE?
- Why use INDICATE?
- INDICATE in 2D
- INDICATE in 3D
- Future development & applications
- Summary

Traditional clustering algorithm

Assume:There are clusters in the datasetGoal:Identify cluster centroids and members

Problem: Do not give enough quantitative information for individual objects

Traditional clustering algorithm

Assume:There are clusters in the datasetGoal:Identify cluster centroids and members

Problem: Do not give enough quantitative information for individual objects

Need to quantitatively trace how "clustered" individual objects are in distribution & how this changes as the system evolves

Traditional clustering algorithm

Assume:There are clusters in the datasetGoal:Identify cluster centroids and members

Problem: Do not give enough quantitative information for individual objects

Need to quantitatively trace how "clustered" individual objects are in distribution & how this changes as the system evolves

What is INDICATE?

Statistical tool for 2D, 3D and 6D datasets

 Quantifies the degree of clustering of <u>each object</u> in a discrete distribution

Assigns a "clustering" Index to each object

 Compares number of nearest neighbours for each object in observed distribution to that expected in a evenly spaced uniform distribution

(Buckner et al., in prep)

(Buckner et al., in prep)

Why use INDICATE?

Can be applied in any desired parameter space

Robust. No preference for data set

- size
- shape
- number of dimensions (2D, 3D, 6D)

 Directly compare Index value for objects in different distributions

Full automated

(Buckner et al., in prep)

Future Development and Applications

- Full testing of 3D version (shapes, simulations..etc.)
- Development & testing of 6D version
- Application to find substructures in observed and simulated data
- Application to quantify/trace mass segregation

Summary

• INDICATE is:

- A novel statistical tool
- Quantifies the degree of clustering of each object in a discrete distribution
- Advantages:
 - Full automated
 - Robust
 - Not dependent on distribution size, shape, of number of dimensions
 - Quantitatively trace the spatial evolution of each object in a distribution
- Applications:
 - Substructure
 - Mass segregation

Questions?

