High-mass star formation in the W43-MM1 protocluster

Thomas Nony

PhD supervised by F. Motte

With F. Louvet, K. Marsh, E. Chapillon, A. Maury, V. Könyves, S. Bontemps et al.

SFM Workshop, 14/06/2017

Overview

1) Introduction and data analysis

2) Cores characterization: CO, SiO and ¹³CS

3) Mass calculation and CMF

Origin of stars' mass

IMF = mass distribution of stars on the main sequence CMF = mass distribution of cores

<u>Open question</u>: What is the IMF origin for massive stars ($M_* > 8 M_{sun}$)? \rightarrow need to observe massive cores ($M_{core} > 20 M_{sun}$)

W43-MM1: a mini-starburst region

- > d = 5.5 kpc
- SFE ~ 25 % in 10⁶ years
 (~ 0.25 M_{sun} / yr, Motte+ 2003)

W43-MM1: a mini-starburst region

5(2000)

- ≻ d = 5.5 kpc
- SFE ~ 25 % in 10⁶ years
 (~ 0.25 M_{sun} / yr, Motte+ 2003)
- Densest and coldest cloud in the galaxy (Csengeri et al. 2017)

Data set presentation

ALMA: a network of 66 antennas forming the largest sub-(mm) interferometer

- Project Cycle 2 and 3, 30h + 23h, PI Motte
- 3 configurations:
 12m compact and extended, 7m (ACA)
- Mosaic: 33 fields (12m), 1.4 pc x 2.1 pc
- Spatial resolution to identify cores:
 0.5" ~ 2000 AU

> Spectro-imaging at λ = 1.3 mm (216-233 GHz): 7 lines bands + 1 continuum band

SpwID	Name	Chans nb.	CtrFreq (GHz)	Chan. Width (kHz / km.s ⁻¹)	Total BW (MHz)
1	SiO(5-4)	960	217.1	244 / 0.3	234
5	CO(2-1)	480	230.5	977 / 1.2	469
6	¹³ CS(5-4)	1920	231.2	244 / 0.3	469
7	continuum	1920	233.4	977 / 1.3	1875

Pre- and proto-stellar cores extraction

Detection and characterization of compact sources with a multiresolution program (G<u>etsources, Men'shchikov et al. 2012</u>)

- > On 12m selfcalibrated map \rightarrow 174 sources detected
- > 2 post selection criteria (size and ellipticity) + visual inspection
 - → 134 cores (including 93 very reliable cores)

Separation of cloud emission at different spatial scales

Continuum map

Overview

1) Introduction and data analysis

2) Cores characterization: CO, SiO and ¹³CS

3) Mass calculation and CMF

Molecular lines used to trace outflows

Outflows driven by the most massive cores

CO outflows

SiO outflows

¹³CS Mean map

¹³CS Velocity map

Overview

1) Introduction and data analysis

2) Cores characterization: CO, SiO and ¹³CS

3) Mass calculation and CMF

Estimate cores mass

Mass calculation from dust thermal emission:

with optically thin emission hypothesis

T_b : brightness temperature

T_d : dust temperature

heating model:

N1a = hot core and $<T_d> = 20 \text{ K}$ $\rho \propto r^{-2} \rightarrow T_d = 20 \left(\frac{r}{14.2"}\right)^{-0.4}$

 \Rightarrow Mass from 0.3 to 180 M_{sun}

Cores able to form massive stars

Table 1: Massive cores	(M)	> 16	M_{\odot}) in	W43-MM1
------------------------	-----	------	-------------	------	---------

Source	Mass (M_{\odot})	CO	SiO outflow	Hot core	Nature
#1	162	Y	Y	Y	
#2	182	Y	Y	Y	
#3	184	Y	Y	Y	
#7	55	Y	Y	N	protostars
#8 (S)	72	Y	Y	N	
#9	71	Y	Y	Y	
#16	23	Y	Y		
#4	49	N?	N?	Y	
#5	42	N	N	Y	protostars?
#10	33	Y?(l)	Y? (B)	Y	
#12	66	N	Y? (R)		prestellar cores?
#24	16	Y? (B)	N?	N	
#6	147~?	N	N	N	prestellar cores
#18	27	Ν	N ?		

 \rightarrow \leq 4 massive pre-stellar cores / 10 massive proto-stellar cores

Different from ratio 10 to 1 for low mass cores (André+ 2010)

CMF of W43-MM1 proto-cluster

- \rightarrow CMF for cores forming up to 70 $\rm M_{sun}$!
- \rightarrow excess of massive cores

Conclusions and future work

- A massive protocluster studied at high resolution with ALMA:
- First measure of CMF in high mass area
 - → top-heavy CMF or evolution with time ? (Motte *et al.* in prep, ALMA LP)
- Good correlation between massive cores and outflows

 \rightarrow few high-mass prestellar cores / 13-20 proto-stellar cores detected with CO and SiO outflows

- \rightarrow still one candidate high mass prestellar core (Nony *et al.* in prep.)
- Collaboration with Jordan Molet (PhD Bordeaux) on lines survey and Fabien Louvet on filaments formation, shocks
- Comparison with simulations within *StarFormMapper*?