Young star forming region in clusters and associations

Tracking fossil imprints in spatial star distribution: a multiscale analysis of YSOs

Isabelle JONCOUR U. Grenoble & U. Maryland

Collaborators Estelle Moraux Gaspard Duchêne Lee Mundy & Marc Pound (umd)

SFM, 13-14 2017

Outline

(2D) Spatial distribution of stars in Taurus

- Multiples & Ultra-wide pairs (Joncour et al 2017)

- NESTs (baby-clusters) (Joncour et al, almost sub...)

- -Multiscale structures
 - (Joncour et al, in prep)

2.First raw results on extended Serpens main

(if enough time)

Credit: ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./ Digitized Sky Survey 2. Acknowledgment: Davide De Martin.

Why Taurus? Taurus a nearby quiescent lowmass star forming region, the most studied ever

Distance: 140 pc Diameter: 25pc Depth: 20 pc (Torres 2007, 2009)

- Low turbulent gas dispersion (0.2 to 2 km/s)
- low stellar density (1 pc⁻²)
- While giant molecular cloud (2.4 10⁴ Msun) large extension - 350 YSOs

FCRAO Radio image in ¹²CO (Top) and ¹³CO (Bottom) of Taurus, Goldsmith et *al* 2008

Very few high-mass stars -> Few highflux ionising winds

Spitzer mosaic of IRAC and MIPS images of Taurus, Mooley et al 2013

Complete census (350 members) down to very lowmass stars (down to 0.02 Msun)

Spitzer Map of the Taurus Molecular Clouds

Why focusing on spatial distribution of young stars ?

Young stars trace the gas distribution from which they formed -> pristine imprints: Powerful diagnostic to assess star cluster formation (Hartmann 2002)

Spatial clustering Local substructures detection

Isabelle Joncour – LMA (UMD) March 2016 14th

Clustering algorithms

Study of unsupervised clustering algorithms, amongst the "jungle"

- Hierarchical techniques :
 - built-in hierarchy
 - single link technique although the most simple and reliable, suffers from chaining effect, noisy effects, complete clustering...
- Partition techniques (Kmeans) : fixed number of clusters, convex structure detection biased (voronoi based method),...

Probability Model-Based Clustering (components mixture & EM)

Density based techniques

Dbscan algorithm appears to be the best choice for a spatial clustering for low-D data, it handles noise/outliers, partial clustering, arbitrary shape detection

Key idea of dbscan

- Two parameters to define the neighborhood: radius ε and number of stars >N_{min} around a star
- Key idea : two stars p and q belong to the same "cluster", based on the connectivity of the points having a similar neighbourhood density (Ester et al., 1996).
- Noise /outliers : set of stars that does not belong to any "groups" of the dataset

Detection at the 99.4% confidence level: constraints parameters ϵ and N_{min}

- One point correlation function to constraint Neighborhood radius ɛ=r_c =0.1 deg (clustering length) based on the one point correlation function
- N_{min} set by the requirement of a high confidence level structure detection (>99.7%) wrt random cumulative function of nearest neighbors
- Stellar spatial structures with local density more than a factor 5 higher than the mean density in Taurus:
 - > 130 stars/deg²

Detection and properties of 20 mini-clusters (NESTs)

- 20 very elongated « miniclusters », the NESTs (Nested Elementary Structures) along the filamentary gas structure
- contain 45% of the whole star population
- Members: 4 to 23 stars
- Size from 5 kAU to 80 kAU median (25 kAU), ie UWPs
- Mass from 0.66 Msun to 13.3 Msun (3.34 Msun median)
- Stellar density from 3 10² deg⁻² to 1.5 10⁴ deg⁻² (median ≈10³ deg⁻², ie 168 pc⁻²

Youth of the NESTs

No sign of dynamical evolution sign as seen the 1-NNS median as a function of the class NEST geometrical mean radius [kAU] **No sign dynamical evolution** sign as seen by the NEST mass-radius relation

72% of class I are in the NESTs -> they may be pristine imprints of star formation

One step further

- This detection of overdense stellar region gives information on one scale
- It does not give what's going on at longer length scale

- Need an algorithm to build multiscale analysis
- We choose to implement a Recursive dbscan

Multiscale analysis

Isabelle Joncour – LMA (UMD) March 2016 14th

Hierarchy: ML-dbscan

- => ML-Dbscan : recursive call on εdbscan : [Lmax, lmin], δε
 - Varying length-scale range allows to build a full multi-level framework

- Step 1 : At each level ε detection of connecred components
- Step 2 : Clustergraph
 conception: how the
 components are
 connected from a level
 to the next
- Step 3 : hierarchy depth index (Strahler modes) and multiscale spectrum

ClusterTree conception multiscale spectrum

- ClusterTree construction (2D-Layout)
 - X-axe ϵ local length scale level
 - Y-axe : linear ordering of stars as obtained from hierarchical single linkage
 - Nodes : density-connected components from ML analysis, ie set of stars within the component)
- Node X-coordinate: ε level (step of iteration or value) at which the density component is obtained
- Node Y-coordinate: barycenter of the component based on the topological ordering of the stars within the component
- Edges/links : describe from one level ε to another the stars that are in common in

ClusterTree of Taurus YSOs convex hull structures

Local neighborhood radius: ε [pc] Strahler order : 1->black, 2->red, 3->green, 4->blue

Simulated star clusters

Isabelle Joncour

Multiscale spectrum and Spatial regimes in Taurus

- Identification of global features and patterns at specific local ε–length scale
- 3 distinct regims in modality spectrum
 - Partition at global scale
 - Fractal hierarchy at intermediate scale (substructuration of clusters)
 - Slope Break at shorter length : UWPs regime
- 4 main levels of hierarchy (Strahler number)

Multiscale analysis: from pristine to dynamical evolution imprints?

Surface stellar density from UWPs to the whole Taurus: 2 trends

- UWPs-NESTs: a range of different scale stellar structures retain primordial features even after gas has been accreted or dispersed
- From NESTs to loose groups: dynamical imprints?

Conclusion

Isabelle Joncour – LMA (UMD) March 2016 14th

Conclusions

- Tools ready to analyse mutiscale structure of spatial distribution of stars anf perform all kind of statistical analysis
- Analysis of hierarchical structure: from multiples, ultra-wide pairs, NESTs and groups of higher hierarchy in Taurus
- New constraints for star formation: 72% Youngest objects (class I) are concentrated in NESTs.
- Statistical characteristics of NESTS (geometry, alignment, spacing, members, ...)
- A break in the surface stellar density as a function of characteristic size of the structure suggests pristine imprints to dynamical evolution
- The NESTs are located at the break point betwen UWP and loose groups

^{7 slides} First brand new (and raw) results on the focus: Serpens main

Collaborators Lee Mundy and Marc Pound

Isabelle Joncour – LMA (UMD) March 2016 14th

Building a more complete and accurate YSOs catalog in Serpens

- YSOs C2d catalog (262)
- Class I[Black x]
- Flat[Purple x]
- II[Red +]
- III[Green +]
- x[Yellow +]
- ALMA obs. (11) mm sources[Dark green o] C2d catalog : new YSO candidate (21)
- 70 um [dark blue filled o]
- light blue 2017 Getman catalog

First Neighbor distribution as a function of Class

Class	1-NNS median [kAU]
0	3.6
X	6.8
flat	9.2
Ι	12.3
ΙΙ	21.7
III	44.3

ClusterTree

SERPENS MAIN

TAURUS

ClusterTree of Taurus

Strahler order : 1->black 2->red 3->oreen 4->blue

Multiscale structures (color Strahler number)

Multiscale and modality spectrum

SERPENS MAIN

TAURUS

Spatial distribution of NESTs

NESTs on NIR extinction map

